Detection and classification of moving objects from UAVs with optical sensors
نویسندگان
چکیده
Small and medium sized UAVs like German LUNA have long endurance and define in combination with sophisticated image exploitation algorithms a very cost efficient platform for surveillance. At Fraunhofer IOSB, we have developed the video exploitation system ABUL with the target to meet the demands of small and medium sized UAVs. Several image exploitation algorithms such as multi-resolution, super-resolution, image stabilization, geocoded mosaiking and stereo-images/3D-models have been implemented and are used with several UAV-systems. Among these algorithms is the moving target detection with compensation of sensor motion. Moving objects are of major interest during surveillance missions, but due to movement of the sensor on the UAV and small object size in the images, it is a challenging task to develop reliable detection algorithms under the constraint of real-time demands on limited hardware resources. Based on compensation of sensor motion by fast and robust estimation of geometric transformations between images, independent motion is detected relatively to the static background. From independent motion cues, regions of interest (bounding-boxes) are generated and used as initial object hypotheses. A novel classification module is introduced to perform an appearance-based analysis of the hypotheses. Various texture features are extracted and evaluated automatically for achieving a good feature selection to successfully classify vehicles and people.
منابع مشابه
A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm
The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...
متن کاملStatistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015